Proximal Cyclic Contraction of Perov Type on Regular Cone Metric Space
نویسندگان
چکیده
In this paper, we present the notions of proximal contractions of Perov first and second kind and proximal cyclic contractions of Perov type and prove the existence and uniqueness of coincidence best proximity point under these contractive conditions in the frame work of regular cone metric space. Our results extend and generalized many existing results in literature.
منابع مشابه
Best Proximity Points Results for Cone Generalized Semi-Cyclic φ-Contraction Maps
In this paper, we introduce a cone generalized semi-cyclicφ−contraction maps and prove best proximity points theorems for such mapsin cone metric spaces. Also, we study existence and convergence results ofbest proximity points of such maps in normal cone metric spaces. Our resultsgeneralize some results on the topic.
متن کاملCommon Fixed Point in Cone Metric Space for $mathbf{s}-mathbf{varphi}$-contractive
Huang and Zhang cite{Huang} have introduced the concept of cone metric space where the set of real numbers is replaced by an ordered Banach space. Shojaei cite{shojaei} has obtained points of coincidence and common fixed points for s-Contraction mappings which satisfy generalized contractive type conditions in a complete cone metric space.In this paper, the notion of complete cone metric ...
متن کاملSome results on convergence and existence of best proximity points
In this paper, we introduce generalized cyclic φ-contraction maps in metric spaces and give some results of best proximity points of such mappings in the setting of a uniformly convex Banach space. Moreover, we obtain convergence and existence results of proximity points of the mappings on reflexive Banach spaces
متن کاملExtensions of Perov theorem
[Perov, A. I., On Cauchy problem for a system of ordinary diferential equations, (in Russian), Priblizhen. Metody Reshen. Difer. Uravn., 2 (1964), 115-134] used the concept of vector valued metric space and obtained a Banach type fixed point theorem on such a complete generalized metric space. In this article we study fixed point results for the new extensions of Banach’s contraction principle ...
متن کاملCommon best proximity points for $(psi-phi)$-generalized weak proximal contraction type mappings
In this paper, we introduce a pair of generalized proximal contraction mappings and prove the existence of a unique best proximity point for such mappings in a complete metric space. We provide examples to illustrate our result. Our result extends some of the results in the literature.
متن کامل